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Finite-volume lattice Boltzmann method
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We present a finite-volume formulation for the lattice Boltzmann method~FVLBM ! based on standard
bilinear quadrilateral elements in two dimensions. The accuracy of this scheme is demonstrated by comparing
the velocity field with the analytical solution of the Navier-Stokes equations for time dependent rotating
Couette flow and Taylor vortex flow. To demonstrate the flexibility of the scheme, we have also simulated a
modified rotating Couette flow, where the inner cylinder has an elliptical shape. The results agree with those
obtained from the traditional marker-and-cell method. The FVLBM scheme is applicable to arbitrarily shaped
two-dimensional regions, and thus the range of applicability of the lattice Boltzmann method has been signifi-
cantly extended.@S1063-651X~99!14605-1#

PACS number~s!: 47.10.1g, 47.11.1j, 05.20.Dd
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In recent years the lattice Boltzmann method~LBM ! has
attracted much attention in the physics and engineering c
munities as a possible alternative approach for solving c
plex fluid dynamics problems. In particular, the inherent p
allelism, the simplicity of programming, and the capabil
of incorporating complex microscopic interactions ha
made LBM a very attractive simulation method for fluid flo
in complex physical systems@1–4#.

However, the LBM suffers several limitations. One
these is that the LBM is constructed on a special class
uniform and regular lattices. The limitation of using unifor
lattices is particularly severe in many practical applicatio
where the complex geometry of boundaries cannot be w
fitted by regular lattices. During the past few years, seve
researchers were motivated by such considerations an
tempted to use irregular lattices. Succiet al. @5# were the first
to propose a finite volume formulation of the lattice Bolt
mann equation~LBE!. Quite recently, another elegant fini
volume scheme was developed by Chen@6#. In a way similar
to the conventional LBMs, He, Luo, and Dembo@7# pro-
posed a model for an arbitrary rectangular mesh. Howe
the above-mentioned approaches of using irregular me
are not satisfactory in the sense that the topology of the g
used is not arbitrary. In a recent paper@8#, we have proposed
a finite-volume scheme using arbitrary two-dimensional l
ear triangular elements from the point of view of mode
finite-volume methods@9,10#. Our finite-volume scheme is
applicable to unstructured meshes with arbitrary connec
ity.

In this paper, we are going to propose and test a fin
volume scheme on quadrilateral elements. It turns out
extension from linear triangular elements to bilinear quad
lateral elements is not as trivial as one might first think.
fact, a great deal of care has to be made in order to crea
simple and practical scheme. Though there are lots
choices of constructing the control volume, we believe t
what we present here is the simplest and most effic
model for bilinear quadrilateral elements. In what follow
one could see that our model for the quadrilateral eleme
PRE 591063-651X/99/59~5!/6202~4!/$15.00
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looks as if the interpolationwere linear. In fact, it is not
linear but quadratic in nature. This feature makes our mo
simple and unique.

As emphasized in Refs.@7,11,12#, coupling between dis-
cretizations of velocity space and physical space is not n
essary. We start with lattice Boltzmann equation~LBE!
which, after discretizing the velocity space, reads

] f i

]t
1vi•“ f i5V i , ~1!

where f i is the particle distribution function associated wi
motion along thei th direction in velocity space,vi the ve-
locity in the i th direction,i 51, 2, . . . , N with N the num-
ber of different velocities in the model, andV i is the colli-
sion operator which commonly approximated by t
Bhatnagar-Gross-Krook model@13#, V i521/t ( f i2 f i

eq),
where f i

eq is the local equilibrium distribution andt the re-
laxation time. Here we choose the nine velocities for t
velocity discretization. The nine discrete velocities are d
fined by vi5(0,0) for i 50, $cos@(i21)p/2#,sin@(i21)p/2#%
for i 51;4 and „A2$cos@(i25)p/21p/4#,sin@(i25)p/2
1p/4#%… for i 55;8. The equilibrium distributionf i

eq is
given by

f i
eq5wir@11 3

2 ~vi•u!1 9
2 ~vi•u!22 3

2 uuu2#, ~2!

where r5( i f i and ru5( i f ivi are the macroscopic mas
density and momentum density respectively, andwi equals4

9

for i 50, 1
9 for i 51;4, and 1

36 for i 55;8.
In Fig. 1, we show the generic situation in which quad

lateral elements surround an interior node of the grid. H
we report a finite-volume method of the cell-vertex type.
this type of formulation, there are two types of grids: t
primal grids~or nodes! are those gridsP, P1 , P2, etc., and
dual grids ~or nodes! are those gridsA, B, C, etc., as
shown in Fig. 1. Thef is values at the primal nodes a
known, and thef is values at dual nodes are unknown a
have to be interpolated from thef is at the primal nodes usin
standard interpolation procedures depending on the elem
types used. For example, linear and ‘‘bilinear’’ interpolatio
6202 ©1999 The American Physical Society



n
a

th

t

n
in
t

rs
m
it
a
In
l-

l
p

e
ll

.

n-
e
a
nd
-

ill

o

re

nt

-
a-
me

rly

rbi-
at

q.

n

de
.

PRE 59 6203BRIEF REPORTS
would be applied to the triangular and quadrilateral eleme
respectively. By ‘‘bilinear’’ we mean that a function on
unit quadrilateral element@0<j<1, 0<h<1# has the form
of f (j,h)5a01a1j1a2h1a3jh, wherea0 to a3 are deter-
mined by the function values at the four nodes. Thus
function is linear along constantj or h lines. For any quad-
rilateral element other than a unit quadrilateral elemen
mapping should be first used to transfer the element onxy
plan into a unit one onjh plan, and therefore the function o
a general quadrilateral element typically has terms includ
all quadratic terms ofx2, y2, andxy. It should be noted tha
the function is linear along the images of constantj andh
lines.

Before we develop the finite-volume scheme, the fi
question one has to ask is how to choose the control volu
ABC•••GH. Obviously, there are many ways. However,
is very important to find an optimal control volume such th
it will lead to a simple and practical finite volume scheme.
the following, we will discuss such choice. The control vo
ume is the polygonABC•••GH surrounding the nodeP is
shown in Fig. 1. We chooseA to be the midpoint of edge
PP1 , B to be the geometric center of elementPP1P2P3, and
C to be the midpoint of edgePP3. The coordinatesxA , xB ,
andxC are given by

xA5~xP1xP1
!/2, xB5~xP1xP1

1xP2
1xP3

!/4,

xC5~xP1xP3
!/2. ~3!

Likewise,D is the center of polygonPP3P4P5. The integra-
tion volume consists of polygonPABC, PCDE, PEFG,
and PGHA. It will become obvious later that this contro
volume has been deliberately designed to give us a sim
scheme.

In the following, we focus on the integration over th
polygonPABC. Similar integrations would be done over a

FIG. 1. Diagram of finite elements sharing one common no
Here P,P1 ,P2 , . . . ,P8 stand for the mesh grid points
A,B,C,D,E,F,G,H make the edges of the control volume~poly-
gon! over which integration of the PDE of Eq.~1! is performed.
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other three polygon centered onP and the results summed
The integration of the first term in Eq.~1! is approximated as

E
PABC

] f i

]t
ds5

] f i~P!

]t
SPABC, ~4!

whereSPABC is the area ofPABC and f i(P) is the f i value
at nodeP. In what follows, the node index is given in pare
theses following thef i values. In the above equation, w
have made an approximation thatf i is constant over the are
PABC to avoid having to solve a set of equations. This ki
of ‘‘lumping’’ technique is a common practice in the finite
volume methods@10#.

Integration of the second term of Eq.~1! will give fluxes
though the four edgesPA, AB, BC, andPC,

E
PABC

vi•“ f ids5vi•E
AB

f idl1vi•E
BC

f idl1I s, ~5!

whereI s is the fluxes from the internal edges. Since we w
sum over all the other polygon likePCDE, the net flux
through internal edges (PA, PC, PE, andPG) will cancel
out. With the assumption of bilinearity off is in quadrilateral
elements, the flux is given by

E
PABC

vi•“ f ids5vi•nABl AB@ f i~A!1 f i~B!#/2

1vi•nBCl BC@ f i~B!1 f i~C!#/21I s ,

~6!

wherenAB and nBC are the outward unit vectors normal t
the edgeAB and BC, respectively,l AB and l BC are the
lengths ofAB andBC, respectively.f i(A), f i(B), and their
corresponding equilibrium particle distribution functions a
the values of these variables atA andB. These may be ob-
tained by interpolation from the four nodes at eleme
PP1P2P3, e.g., f i(A)5@ f i(P)1 f i(P1)#/2, and f i

eq(A)
5@ f i

eq(P)1 f i
eq(P1)#/2. Note that this seemingly linear in

terpolation is actually resulting from the bilinear interpol
tion. This is because we have chosen the control volu
such that edges of our control volume~e.g.,AB, BC, etc.!
are those special lines where the functions are linea
changing along on thejh plane. In fact, our finite-volume
scheme is still quadratic in nature. Of course, one may a
trarily choose other types of control volume; however, th
will result in much more complicated schemes.

Assuming the bilinearity off i and f i
eq over the quadrilat-

eral elements, the integration over the collision term of E
~1! results in the following formula:

2E
PABC

1

t
~ f i2 f i

eq!ds52
SPABC

16t
@9D f i~P!13D f i~P1!

1D f i~P2!13D f i~P3!#, ~7!

whereD f i5 f i2 f i
eq , and f i(P), f i(P1), f i(P2), and f i(P3)

and their corresponding equilibrium particle distributio
functions are the values of these variables atP, P1 , P2, and
P3, respectively.

.
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6204 PRE 59BRIEF REPORTS
With these results, the integration of Eq.~1! over the
quadrilateralPABC is complete. The integration over th
whole control volume is just the sum of contributions fro
all these terms over different polygons such asPCDE, etc.
Therefore,f i at nodeP is updated as follows:

f i~P,t1dt!5 f i~P,t !

1
dt

SP
S (

aroundP
~collisions!2 (

aroundP
~fluxes! D ,

~8!

whereSP is the total area of the control volume around no
P, ‘‘collisions’’ and ‘‘fluxes’’ refer, respectively, to the
finite-volume-integrated contributions from the collisio
term and fluxes.

To demonstrate the validity of the above scheme, we fi
simulated the rotating Couette flow, where fluid is contain
between two concentric cylinders. The outer cylinder rota
with a constant velocityV, while the inner cylinder is kept a
rest. We set the initial conditions for the macroscopic vel
ity field to be zero. Here we have taken the radii of the t
cylinders to beR1530 andR2560. The angular velocity of
the outer cylinderV to be 0.01. We set fluid densityr51.0,
and relaxation timet50.5 with time steppingDt50.25. The
mesh size for the system isNx3Ny5180331, with Dx
5p/90 andDy51.0. Note that topologically the computa
tion domain is a rectangular array of points, and we ha
Dx5Du andDy5Dr . In Fig. 2 we show the numerical re
sults of a steady velocity profile and the corresponding a
lytical solution vu(r )5V@R1R2 /(R2

22R1
2)#(r /R12R1 /r ).

From Fig. 2 one can see that the agreement with the theo
ical results is excellent, and the global error was found to
L151025.

To illustrate the flexibility of the FVLBM scheme, we
have also simulated a modified rotating Couette flow wh
the inner cylinder has an elliptical shape. Here the radius
the outer cylinders is stillR2560, and the inner elliptica
shape has the form of (x/15)21(y/30)251. We generate the
computation mesh as follows. First, we draw 61 layers w

FIG. 2. Numerical velocity profile~data points! in steady state
for rotating Couette flow, compared with analytical solution~curve!
vu(r )5V@R1R2 /(R2

22R1
2)#(r /R12R1 /r ).
st
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the general equation for the layers (x/a)21(y/b)251, with
a5151 3

4 i , b5301 i /2, wherei 50,1, . . . ,60 is thelayer in-
dex. Then, we equally divide the 2p space into 180 parts by
drawing straight lines from the origin. The mesh grids ha
coordinatesx5a cos(2pj/180) andy5b sin(2pj/180), with
j 50,1, . . . ,179. We drive the outer cylinder with the sam
constant velocityV50.01, while the inner deformed cylinde
is still kept at rest. We use the same fluid densityr51.0 and
relaxation timet50.5 with time stepDt50.25. The spatial
steps areDx5p/90, Dy50.5 with total meshes ofNx3Ny
5180361 grids are used. Since there is no analytical so
tion available, we have computed the numerical solution
Navier-Stokes equation using the standard marker-and
~MAC! method. In Fig. 3 we show both numerical resu
and find that they agree extremely well.

In the following, we simulate the evolution of the two
dimensional Taylor vortex flow in a square domain with p
riodic boundary conditions in bothx and y directions.
The evolution of velocity field has the analytica
solution u(x,y,t)5“3@f(x,y,t)êz#, with f(x,y,t)
5(u0 /k2)exp@2n(k1

21k2
2)t#cos(k1x)cos(k2y). Here “5]xêx

1]yêy , k1 andk2 are the wave number alongx andy direc-
tions, andn is the kinematic viscosity of the fluid. The vor
tex field will decay with exponential rate exp@2n(k1

21k2
2)t#.

In the simulation, we used wave numberk151, k254. The
velocity u0 was chosen to be 0.01 so that the compressibi
of fluid is negligible. We set the density of fluidr51.0, and
the relaxation timet51022 with time stepDt51023. The
space grids Dx5p/16, Dy5p/64, and total meshes
Nx3Ny5323128 grids are used. The initial condition fo
the macroscopic velocity field is u(x,y,t50)5“

3@f(x,y,t50)êz# with f(x,y,t50)5(u0 /k2)cos(k1x)
3cos(k2y). We have found from this simulation that the k
nematic viscosity is equal tot/3. We did not obtain the nu-
merical viscosity. In Fig. 4 we show the comparison betwe
numerical and analytical solutions for the Taylor vortex flo
at different time. Here the analytical curves have used
relationn5t/3. As one can see the agreement between
merical and analytical results is excellent.

FIG. 3. Numerical velocity profiles in steady state for deform
Couette flow. Velocity was measured along the lines~a! x50, ~b!
y5x, and~c! y50 in the first quarter of thex-y plane. Two sets of
symbols stand for finite volume LBM simulations~circles! and
MAC simulations~pluses!.
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It is interesting to make a comparison between the ab
scheme and the finite-volume scheme of Succiet al. @5#.
First, our method involved two types of grids, primal~those
grids of P,P1 ,P2, etc.! and dual grids~those grids of
A, B, C, etc.! as shown in Fig. 1. They only used the p
mal grids. Second, while they assume linearity of thef i over
primal grid, and only the primal grids are used in the fl

FIG. 4. Numerical velocityv(x)y5p /u0 at time t52, 10, 20 for
Taylor vortex flow, compared with the analytical solutions~dashed
curves!.
d-
ag
e

calculation. We assume the bilinear of thef i over primal
grids. Our calculation of flux and collision is obtained v
integration over control volumes that are made of dual gri
The dual grids that consist of the control volume have be
chosen such that the calculation of flux and collision is see
ingly linear. In fact, our finite-volume scheme is quadratic
nature. As pointed out in a number of previous studies@5–7#,
a linear interpolation leads to a numerical viscosity whi
invalidates the LBE as a useful Navier-Stokes equat
solver. Here one should distinguish our model from the l
ear interpolation model as we emphasized above.

To conclude, we have presented a finite-volume sche
for the LBM using a quadrilateral element that can be a
plied to unsteady, incompressible fluid flow in a wide varie
of shaped boundaries. While our methods follow from
application of finite-volume methods to the LBE, they st
keep much of the simplicity of the conventional LBM. Th
allows the FVLBM to be applied to many interesting syste
that so far have been difficult to treat using the conventio
LBM. Several applications as well as extensions to thr
dimension problems are under investigation and will be
ported in subsequent publications.

This work was supported by the PRF under Contract N
33160-GB9 and the Research Corporation under Grant
CC4250. The simulations were performed on the SGI Po
Challenge at the Ohio Supercomputer Center.
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