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We present a finite-volume formulation for the lattice Boltzmann met{f®dLBM) based on standard
bilinear quadrilateral elements in two dimensions. The accuracy of this scheme is demonstrated by comparing
the velocity field with the analytical solution of the Navier-Stokes equations for time dependent rotating
Couette flow and Taylor vortex flow. To demonstrate the flexibility of the scheme, we have also simulated a
modified rotating Couette flow, where the inner cylinder has an elliptical shape. The results agree with those
obtained from the traditional marker-and-cell method. The FVLBM scheme is applicable to arbitrarily shaped
two-dimensional regions, and thus the range of applicability of the lattice Boltzmann method has been signifi-
cantly extended.S1063-651X99)14605-1

PACS numbefs): 47.10:+g, 47.11+j, 05.20.Dd

In recent years the lattice Boltzmann meth@d8M) has looks as if the interpolatiorwere linear. In fact, it is not
attracted much attention in the physics and engineering continear but quadratic in nature. This feature makes our model
munities as a possible alternative approach for solving comsimple and unique. _ _
plex fluid dynamics problems. In particular, the inherent par- As emphasized in Ref$7,11,13, coupling between dis-
allelism, the simplicity of programming, and the capability cretizations of velocqy space and physical space is not nec-
of incorporating complex microscopic interactions have€SSary- We start with lattice Boltzmann equatidrBE)

made LBM a very attractive simulation method for fluid flow which, after discretizing the velocity space, reads
in complex physical systenfd—4]. i
However, the LBM suffers several limitations. One of ot TV V=0, (1)
these is that the LBM is constructed on a special class of
uniform and regular lattices. The limitation of using uniform wheref; is the particle distribution function associated with
lattices is particularly severe in many practical applicationgmotion along theth direction in velocity spacey; the ve-
where the complex geometry of boundaries cannot be welbcity in theith direction,i=1, 2, ..., N with N the num-
fitted by regular lattices. During the past few years, severaper of different velocities in the model, artd; is the colli-
researchers were motivated by such considerations and &lon operator which commonly approximated by the
tempted to use irregular lattices. Suetial.[5] were the first Bhatnagar-Gross-Krook moddll3], Q;=—1/7(f;—f79),
to propose a finite volume formulation of the lattice Boltz- wheref?% is the local equilibrium distribution and the re-
mann equatiofLBE). Quite recently, another elegant finite laxation time. Here we choose the nine velocities for the
volume scheme was developed by Chéh In a way similar ~ velocity discretization. The nine discrete velocities are de-
to the conventional LBMs, He, Luo, and Dembd] pro-  fined byv;=(0,0) fori=0, {cog(i—1)m/2],sir(i—1)m/2]}
posed a model for an arbitrary rectangular mesh. Howevefor i=1~4 and (y2{co§(i—5)m/2+ m/4],sir{(i—5)m/2
the above-mentioned approaches of using irregular meshesm/4]}) for i=5~8. The equilibrium distributionf?® is
are not satisfactory in the sense that the topology of the gridgiven by
used is not arbitrary. In a recent paj8t, we have proposed eq_,, 30\, . 90y V2 312
a finite-volume scheme using arbitrary two-dimensional lin- Fi=wipl1+2(vi-w+3(v-w)*=2|u], @
ear triangular elements from the point of view of modernwhere p=3,f; and pu=Z3;f,v; are the macroscopic mass
finite-volume method$9,10]. Our finite-volume scheme is density and momentum density respectively, an@qualsg
applicable to unstructured meshes with arbitrary connectivfor i=0, § for i=1~4, andss for i=5~8.
ity. In Fig. 1, we show the generic situation in which quadri-
In this paper, we are going to propose and test a finitelateral elements surround an interior node of the grid. Here
volume scheme on quadrilateral elements. It turns out tha&e report a finite-volume method of the cell-vertex type. In
extension from linear triangular elements to bilinear quadrithis type of formulation, there are two types of grids: the
lateral elements is not as trivial as one might first think. Inprimal grids(or nodeg are those grid®, P,, P, etc., and
fact, a great deal of care has to be made in order to createdual grids (or node$ are those gridsA, B, C, etc., as
simple and practical scheme. Though there are lots ofhown in Fig. 1. Thef;s values at the primal nodes are
choices of constructing the control volume, we believe thaknown, and thef;s values at dual nodes are unknown and
what we present here is the simplest and most efficienhave to be interpolated from thes at the primal nodes using
model for bilinear quadrilateral elements. In what follows, standard interpolation procedures depending on the element
one could see that our model for the quadrilateral elements/pes used. For example, linear and “bilinear” interpolations
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other three polygon centered éhand the results summed.
The integration of the first term in E€L) is approximated as

of,  af(P)
fp —do= Spagcs (4)

agcdt 0 at

whereSp g is the area oPABC andf;(P) is thef; value
at nodeP. In what follows, the node index is given in paren-
P, theses following thef; values. In the above equation, we
have made an approximation thatis constant over the area
PABCto avoid having to solve a set of equations. This kind
of “lumping” technique is a common practice in the finite-
volume method$10].

Integration of the second term of E@.) will give fluxes
though the four edgeBRA, AB, BC, andPC,

P6

7 P8 j Vi'VfidO':Vi'f fid|+vi'f fid|+|S1 (5)
P AB BC

ABC

FIG. 1. Diagram of finite elements sharing one common node.
Here P,P;,P,,...,Pg stand for the mesh grid points. wherelgis the fluxes from the internal edges. Since we will
A,B,C,D,E,F,G,H make the edges of the control volurfigoly- ~ sum over all the other polygon lik€ CDE, the net flux
gon) over which integration of the PDE of E€l) is performed. through internal edgesP(A, PC, PE, andPG) will cancel

out. With the assumption of bilinearity dfs in quadrilateral

would be applied to the triangular and quadrilateral elementglements, the flux is given by
respectively. By “bilinear” we mean that a function on a
unit quadrilateral elemenfi0<é<1, 0< n=<1] has the form _
of f(&,7)=ag+a,£+a,n+azén, wherea, to az are deter- prBcvi -Viido=v;-nagl agl fi(A) + 1(B) ]/2
mined by the function values at the four nodes. Thus the
function is linear along constagtor 7 lines. For any quad- +Vi-ngclec fi(B)+ i (C)]12+1s,
rilateral element other than a unit quadrilateral element a (6)
mapping should be first used to transfer the elemenkyn
plan into a unit one o » plan, and therefore the function on wheren,z andngc are the outward unit vectors normal to
a general quadrilateral element typically has terms includinghe edgeAB and BC, respectively,l g and Igc are the
all quadratic terms ok?, y?, andxy. It should be noted that lengths ofAB andBC, respectivelyf;(A), f;(B), and their
the function is linear along the images of constdrdnd »  corresponding equilibrium particle distribution functions are
lines. the values of these variables Atand B. These may be ob-

Before we develop the finite-volume scheme, the firstained by interpolation from the four nodes at element
question one has to ask is how to choose the control volumpp, p,p,  e.g., f;(A)=[f,(P)+f,(P;)]/2, and fYA)
ABC- -:GH. Obviou;ly, there are many ways. However, it =[f89P)+fYP,)]/2. Note that this seemingly linear in-
is very important to find an optimal control volume such thatgryolation is actually resulting from the bilinear interpola-
it will lead to a simple and practical finite volume scheme. Inyjon  This is because we have chosen the control volume
the following, we will discuss such choice. The control vol- ¢ ,-h that edges of our control volunie.g.,AB, BC, etc)
ume is the polygorABC. - - GH surrounding the nod® is 416 those special lines where the functions are linearly
shown in Fig. 1. We choosa to be the midpoint of edge changing along on théz plane. In fact, our finite-volume
PPy, Bto be the geometric center of elemét®,P,P3, and  gcheme s still quadratic in nature. Of course, one may arbi-

C to be the midpoint of edg® P. The coordinatesa, Xz, trarily choose other types of control volume; however, that
andxc are given by will result in much more complicated schemes.
Assuming the bilinearity of; and {79 over the quadrilat-
Xa=(XptXp )2, Xg=(Xp+Xp t+Xp,+Xp_)/4, eral elements, the integration over the collision term of Eq.

(1) results in the following formula:

XC:(XP+XP3)/2' (3)

1 S
—fPABC;(fi—fieq)da=—%?_0[9Afi(P)+3Afi(Pl)

Likewise, D is the center of polygof P;P,Ps. The integra-

tion volume consists of polygoRPABC, PCDE, PEFG, +Afi(Py) +3Af(P3)], (7)

and PGHA. It will become obvious later that this control

volume has been deliberately designed to give us a simplehereAf;=f;— {79, andf;(P), f;(P,), fi(P,), andf;(P3)

scheme. and their corresponding equilibrium particle distribution
In the following, we focus on the integration over the functions are the values of these variable®alP,, P,, and

polygonPABC. Similar integrations would be done over all P3, respectively.
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FIG. 3. Numerical velocity profiles in steady state for deformed
Couette flow. Velocity was measured along the lif@sx=0, (b)
y=X, and(c) y=0 in the first quarter of th&-y plane. Two sets of
symbols stand for finite volume LBM simulationgircles and
MAC simulations(pluses.

FIG. 2. Numerical velocity profilédata points in steady state
for rotating Couette flow, compared with analytical soluticarve
vo(r)=V[RR, /(R5—R3)](r/Ry— Ry It).

With these results, the integration of E(L) over the

quadrilateralPABC is complete. The integration over the 4,4 general equation for the layers/&)2+ (y/b)2=1, with
whole control volume is just the sum of contributions from 5 _ 15 3 b=30+i/2, wherei=0,1, . .. ,60 is theba);er in-

all these terms over d?fferent polygons suchRGDE, etc.  gex. Then, we equally divide thes2space into 180 parts by
Therefore,f; at nodeP is updated as follows: drawing straight lines from the origin. The mesh grids have
coordinatesx=a cos(2rj/180) andy="b sin(27j/180), with
j=0,1,...179. We drive the outer cylinder with the same
constant velocity/=0.01, while the inner deformed cylinder
is still kept at rest. We use the same fluid dengity1.0 and
relaxation timer=0.5 with time stepAt=0.25. The spatial
steps areAx=7/90, Ay=0.5 with total meshes dfl, XN,
®) =180x61 grids are used. Since there is no analytical solu-

) tion available, we have computed the numerical solution of
whereSF, is the total area of the control volume around nodepjayier-Stokes equation using the standard marker-and-cell
P, “collisions” and “fluxes” refer, respectively, to the (MAC) method. In Fig. 3 we show both numerical results
finite-volume-integrated contributions from the collision and find that they agree extremely well.
term and fluxes. In the following, we simulate the evolution of the two-

~ To demonstrate the validity of the above scheme, we firsgimensional Taylor vortex flow in a square domain with pe-
simulated the rotating Couette flow, where fluid is containediodic boundary conditions in both and y directions.

between two concentric cylinders. The outer cylinder rotateshe evolution of velocity field has the analytical
with a constant velocity, while the inner cylinder is kept at solution  U(x,y,t)=V X[ é(x,y t)éz] with — B(x,y,t)

rest. We set the initial conditions for the macroscopic veloc- 5 A
ity field to be zero. Here we have taken the radii of the tWO—(u9/k2)exp[—v(k1+k§)t]cos(<1x)cos(<2y). Here V=d,&

cylinders to beR; =30 andR,=60. The angular velocity of +Jy€,, k; andk, are the wave number alongandy direc-
the outer Cy“ndeN to be 0.01. We set fluid density: 1.0, tions, andv is the kinematic ViSCOSity of the fluid. The vor-
and relaxation time-= 0.5 with time stepping\t=0.25. The  tex field will decay with exponential rate expy(i¢+k)t].
mesh size for the system ,xN,=180x31, with Ax  In the simulation, we used wave number=1, k,=4. The
=x/90 andAy=1.0. Note that topologically the computa- velocity uy was chosen to be 0.01 so that the compressibility
tion domain is a rectangular array of points, and we havef fluid is negligible. We set the density of flujg=1.0, and
Ax=A@ andAy=Ar. In Fig. 2 we show the numerical re- the relaxation timer=10"2 with time stepAt=10"3. The
sults of a steady velocity profile and the corresponding anaspace grids Ax=7/16, Ay=w/64, and total meshes
lytical solution v 4(r)=V[R;R,/(RE—R?)](r/R,—R;/r).  NyXNy,=32x128 grids are used. The initial condition for
From Fig. 2 one can see that the agreement with the theorefle macroscopic  velocity field isu(x,y,t=0)=V
ical results is excellent, and the global error was found to bex[ ¢(x,y,t=0)e,] with  &(X,y,t=0)= (Ug/K,)COSK.X)
L,=105, Xcoskyy). We have found from this simulation that the ki-
To illustrate the flexibility of the FVLBM scheme, we nematic viscosity is equal te/3. We did not obtain the nu-
have also simulated a modified rotating Couette flow wherenerical viscosity. In Fig. 4 we show the comparison between
the inner cylinder has an elliptical shape. Here the radius ofiumerical and analytical solutions for the Taylor vortex flow
the outer cylinders is stilR,=60, and the inner elliptical at different time. Here the analytical curves have used the
shape has the form ok(15)?+ (y/30)?=1. We generate the relation v= 7/3. As one can see the agreement between nu-
computation mesh as follows. First, we draw 61 layers withmerical and analytical results is excellent.

fl(P,t+dt):f|(P,t)
d

+—t2

SP aroundP

(collisiong— >,

aroundP

(fluxes |,
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FIG. 4. Numerical velocity (x),- . /u, at time =2, 10, 20 for
Taylor vortex flow, compared with the analytical solutiqsshed
curves.

It is interesting to make a comparison between the abov
scheme and the finite-volume scheme of Suetcal. [5].
First, our method involved two types of grids, prim#iose
grids of P,P,,P,, etc) and dual grids(those grids of
A, B, C, etc) as shown in Fig. 1. They only used the pri-
mal grids. Second, while they assume linearity of thever
primal grid, and only the primal grids are used in the flux
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calculation. We assume the bilinear of tlheover primal
grids. Our calculation of flux and collision is obtained via
integration over control volumes that are made of dual grids.
The dual grids that consist of the control volume have been
chosen such that the calculation of flux and collision is seem-
ingly linear. In fact, our finite-volume scheme is quadratic in
nature. As pointed out in a number of previous stulies?],

a linear interpolation leads to a numerical viscosity which
invalidates the LBE as a useful Navier-Stokes equation
solver. Here one should distinguish our model from the lin-
ear interpolation model as we emphasized above.

To conclude, we have presented a finite-volume scheme
for the LBM using a quadrilateral element that can be ap-
plied to unsteady, incompressible fluid flow in a wide variety
of shaped boundaries. While our methods follow from an
application of finite-volume methods to the LBE, they still
keep much of the simplicity of the conventional LBM. This
allows the FVLBM to be applied to many interesting systems
that so far have been difficult to treat using the conventional
LBM. Several applications as well as extensions to three-
dimension problems are under investigation and will be re-
ﬁorted in subsequent publications.
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